THE DATA EXECUTION MODULE
NBSIR 88-3704 OF THE VERTICAL WORKSTATION

January 6, 1988 By:
Thomas R. Kramer
Rebecca E. Weaver



THE DATA EXECUTION MODULE OF THE VERTICAL WORKSTATION
OF THE AUTOMATED MANUFACTURING RESEARCH FACILITY
AT THE NATIONAL BUREAU OF STANDARDS

Dr. Thomas R. Kramer
Guest Worker, National Bureau of Standards, &
Research Associate, Catholic University

Ms. Rebecca E. Weaver
Summer Intern, National Bureau of Standards

January 6, 1988

Funding for the research performed by Dr. Kramer and reported in this paper was provided to
Catholic University under Grant No. 60NANB5D0522 and Grant No. 7ONANB7HO716 from the
National Bureau of Standards.

Certain commercial equipment and software are identified in this paper in order to adequately
specify the experimental facility.  Such identification does not imply recommendation or
endorsement by the National Bureau of Standards, nor does it imply that the equipment and
software identified are necessarily the best available for the purpose.

This publication was prepared in part by a United States Government employee as part of her
official duties and is, therefore, a work of the United States Government and not subject to

copyright.



VWS Data Execution

CONTENTS

I, INTRODUGCTION .....oiiiiiie et eeeeete e ste e ste e seeae e ssestessessesseeseeseeneensensessessessensenses 1
I O N I = S USSP 1
2. AUDIENGCE ...ttt bbb st e b e et et et e te e e renreenn 1
3. BRIEF VWS DESCRIPTION ....octiiiieiiese ettt saesae e ssessessennas 1

4. DESIGN PROTOGCOL ....coitiiiiiiriesiisiieieee ettt sttt st b nsesae s see s 2
5. PROCESS PLAN PROTOCOL .....cotiiiiisiestesiesiesiessessee e sse e ssessessessessesseessesssssessessessesses 3
6. SUMMARY OF DATA EXECUTION MODULE CAPABILITIES.........cccocvvvrrnennnne 4
7. RELATED READING .....oottiiiiiieiie ettt st sttt st st nnenne s 5
1. DATA EXECUTION MODULE OPERATION .....ccocoieierieriene e eesseeeesee e see e e 7
1. INTRODUCTION ...coutiiiiiitiniesiesiesieseeee st sae st it sse s e s stesaesbesbessessesseesessessessessessens 7
2. INITIALIZATION....cotitesieetisieeeeee ettt ee et stesbessesseeneeneenseneentessesnenrens 11
P20 T © < T T USRS 11

2.2. WOrKpIiECE MOAEL ..ot enne e 11

2.3. Process Plan ENNANCEMENL .........coiiiiiiiiiiiie et s 11

2.4. Process Plan SEOUENCING. ......cceeereerierterieriesiesieseee et e e sne b e s 14

2.5. DataBase INITaliZaHON. ........cooeeieieiesese e 14

3. STEPPING THROUGH THE PROCESS PLAN......cooiiirere e 14
G300 I 1 110 [ o o USRS 14

3.2. FUNction Call ASSEMDIY .......oooeiieeee e 15

O I 151 N SO 16
4 I 1 011 0o 1o i o o TSR 16

4.2, Printing PSEUAOCOME. .........ccoveieiieriecie e sie et ee ettt sne e s e nneenes 16

4.3. Use of Graphicsfor Flashing and Tool Path.............cccooeiiiiieccie e, 16

5. DATA REQUIREMENTS.......oot ettt sttt nnesnennean 19
HT. WORKPIECE MODEL ..ottt sttt sbe e ssessestesnesnesneas 21
I 1 N A 74N B 21
2. CONSTRUCTION......uiitiriirtiriisiieieetesie st sttt es e see e stesse b ssesae e esesseneesbesbesbesrens 21
T U S TSSO 21



VWS Data Execution

V. MAGCHINING ...ttt st be st e besreese e st e e e sessesbeseesaenneas 23
I @ A Y | 23
2. VERTICAL PASSINCREMENTS. ..ottt sttt s sne e 23
3. TYPESOF METAL CUTTING....cooiiiese sttt sttt sresnennens 23

G0t IR @< T T USRS 23
G2 o |V 11 g PSRN 24

G 022% I 1 011 {00 8ot i o] o SO OPURRPRRPRN 24
322, RAIMPING ... ettt ettt e e e bbb b e bt st se e e e e sre b e seeene e 25
3.3, Peripheral MilliNG ....cooui i nne e 25
GG 1 I 1 011 {00 1t i [0 o SO RUSURRPRRTRN 25
3.3.2. Conventional vS. Climb CUTING .....ccvoierieiieieieieniese e 25
3.3.3. SLEPOVEY ...ttt an e ra e sne e s re e nreeean 26
G0 N T 0 TE T 1 g o SO PRRR 29
3.5, DIHING ettt n b e s 29
G ST = o o1 o PSR 29
G R O 11 01 (= £ 1 01 (1 o ORI 29
3.8, ChaMIFEIING ..ottt n e b nr s 29
e I O 01 g 111 PSR 30

G (O T @011 =1 oo 1 0o PRSI 30
311, FACEMITTING .ttt nr s 30
G300 2 o Y 1111 o SR 30
4. SPEEDS AND FEED RATES ...ttt s 31
5. ZERO FINDING......coiiiteie sttt te ettt ae e aessestesneesa e e eneesensenseseensensens 31
o300 R [ g1 0o 1 1o o OSSP 31
5.2, Setting X-Zer0 @ Y -ZEI0.......ccoueiieiiieiiie it esie st ste st ae s ste s e sne e sseeenre e 31
30228 I 1 011 {00 [0 i o] o S USSP 31
5.2.2. Probing @ COMMEY .......cccieieeieceesteeee st estesee st e e e ae e e sse e seesseeneesneesnennnens 32
5.2.3. Probing @aHOIE .......oooi e 32

5.3, SELUNG Z-ZEIO....eeeeeeie sttt bbbt n e b e 35
5.3.1. W-XIS SELING.....ccuieieiiieiiecie ettt st te e ae e ss e ae e e beeneesreenneenneas 35
5.3.2. Setting Z-zero fromthe Top of the Part...........cccoveeiiecciicccece e 36

6. TOOL CHANGING.......cci ittt aenn e nesreene e 36



VWS Data Execution

V. AUTOMATIC NC-CODING .....occiitiririieiesiesiesesiesseseseesee e ssessessessessessessssssessessessessessens 37
I @ A Y | 37
2. NC-CODE.......cotiieiiriese ettt bbbttt et e b be s bt bt et et et e e e nbesbesbenreas 37

P28 T 1 00 (1 (o o 1TSS 37
2.2, AN EXBMPIE ... e 39
2.3. Firstand Last Lines Of @aProgram..........cccceeoeiiereeieseese e seese e e e ssee e sneenens 41

3. GENERAL APPROACH TO CODE-WRITING......cccceierererienesieseeeseeseeseeseeseesnesnens 41
G300 R 1 110 [ o o PSPPSR 41
3.2. Pseudocode and Print ROULINE..........coiiiverirenieieeiesie s 42
3.3, COMIMENTS ...ttt e et be e sae e e sbe e s s e e sse e saneesneesnneenneesnreens 43
3.4. Maching CapabilitiES .........coeiieieeeree e s 43
103t W 911 {00 8 (o] o OSSP 43
3.4.2. CommON CapabilitiES ......cciieiiieiie e 44
3.4.3. Less Common CapabilitiES........c.ooiiirireneeeeee e 44

4. SIMPLE ALGORITHMS ... .ottt 45
R 9 1 11 T o USSR 45
A "o o ] o USSP PR 45
G T 0 1916 1 (1 SR 45
4.4, Milling aStraight_ GrOOVE........cccueiiieiiecie et 45
4.5, MilliNG @ GIO0VE........ooiiieriiitieieeeeee ettt b et e e n b e sne e 46
T @1 7= 01 1= 1 o SR 46
A7, Center DITING c.veeeee et nneas 46
4.8. COUNLEIDONNG ...ttt b et e e e nn b e nne e 46
5. NON-TRIVIAL BUT EASY ALGORITHMS........coiiiene e 46
oI I = o SV 1 1 o USSR 46
IV o U 1] oo USSP 47
6. SOPHISTICATED ALGORITHMS ...ttt 47
B.1. POCKEL MIllING...c.iiiiieiii e e er e 47
G300 5t T 1 1o [ o o o PSSP 47
6.1.2. Normal Pocket AlgOrithm..........ccooieiieeee e 47
6.1.3. Very Small POCKELS..........ccoiiiiiiie et 47
6.1.4. SMAll POCKELS........coieeieieieiiee sttt st e eneesreenne e 48
6.1.5. Makingthe Initial SIOt........cccccviieeiieie e 48

B.2. TEXE MITIING ..t e bt e b e e re e 50
6.3. Milling @ CONtOUr GIOOVE........ccooiiiriiriirienienieeie ettt 52
6.4. Milling @ ContOUr POCKEL............cooueiieiiesieeie et 52
6.5. MilliNg @ Side CONLOUN .......ccueiiiiiiiieiie et 52

V1. DATA EXECUTION MODULE SOFTWARE........ccciiiirinerenenesie e 55
1. INTRODUCTION ....ooiiiiiiiiisiesiesieseeee ettt sae st stesbessessesseeneesessessessessenns 55
2. LISPFUNCTIONS......ccoe ettt ste ettt ae e aessesaesseene e e eneensessessesnessensens 55

REFERENCES ..ottt sttt sttt st e be st be st e se et e e e teseenbenreenn 57



LIST OF FIGURES

VWS Data Execution

Page
Figure 1. Data EXECULION DIBWING ....c.coereeieieiesie sttt n e 17
T 102 oL 1Y T o S 24
Figure 3. Climb-Cut Peripheral Milling .......cccooouiiiieiie e 27
Figure 4. Conventional Peripheral Milling ... 28
T [U R TS 1(] ao 7= o 1 34
Figure 6. Pocket Cutting TOOl Paths...........cccviiiiiiieiie e 49
Figure 7. TeXt TOOI Path........ccooiiiiiieeeee s 51
Figure 8. Contour POCKet TOOI Path ..........cc.ooueiieicee e 53
Figure 9. Side Contour TOOI Path ...........couiiiiiiiecie et 54

-V -



Table 1.
Table 2.
Table 3.
Table 4.
Tableb5.
Table 6.
Table 7.

LIST OF TABLES

Data Execution Screen MEeSSages........coveeeeeneerienerienieniens
PrOCESS Plan......cveeiiieeceee ettt
Design and WOrKPIECE. .......cccveeireeiie et
Enhanced ProcessS Plan .........cccueeeeeeieee e
N[Ot o L= 3O
Numerical Control COdES........eeevvveieieiiieeeccceee e
Data Execution LISP FUNCLIONS.........ccoocvueeeiiiieeec e

VWS Data Execution



THE DATA EXECUTION MODULE OF THE VERTICAL WORKSTATION
OF THE AUTOMATED MANUFACTURING RESEARCH FACILITY
AT THE NATIONAL BUREAU OF STANDARDS

.  INTRODUCTION

1. CONTENTS

This paper discusses the Data Execution module of the Vertical Workstation (VWS) of the
Automated M anufacturing Research Facility (AMRF) at the National Bureau of Standards.
The Data Execution module is where numerical control code (NC-code) for the
workstation’s vertical milling machine is prepared. The descriptions pertain to the system
in use during the summer of 1987.

Chapter 11 tells what the module does in its three phases of action: initialization, stepping
through the process plan and closing.

Chapter 111 discusses the workpiece model used by the module: how it is initialized, kept
up to date as steps of the process plan are executed, and used.

Chapter 1V discusses machining metal and describes the machining operations used in the
system.

Chapter V discusses automatic NC-coding in the VWS2 system: what NC-code looks like,
how NC-code is interpreted, the general approach to NC-coding taken by the module, and
what the machining algorithms are which have been implemented.

Chapter VI discusses the L1SP software which comprises the module.
2. AUDIENCE

The paper is intended to be useful to people interested in concepts and technical details of
the VWS, particularly AMRF personnel who are running the VWS or maintaining or
improving the software for the VWS. The paper is intended to be useful also to other
researchers in automated manufacturing. Knowledge of (i) the computer language LISP, (ii)
machining tools, and (iii) NC-code language is useful but not essential to reading this paper.
Detailed documentation of the LISP functions that are involved with the systems described
here is being prepared separately.

3. BRIEF VWS DESCRIPTION

The VWS is a computer-integrated automated machining workstation. It includes a control
system, a computer-aided design system, an automatic process planning system, and an
automatic NC-code generator. The principal machinery isamilling center (Monarch VMC-
75 with a GE2000 controller) and a robot (Unimate 4070 with aVal 11 controller) to tend
the milling center. Thereis quite abit of ancillary hardware. The system is controlled from
a microcomputer (Sun 3/160 with 6M memory, BW monitor). Running in stand-alone
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mode, it is possible to design and machine a simple metal part within an hour. The VWS
may also be run as an integrated part of the AMRF. The workstation is described in more
detail in [K&J1].

The software for the VWS is written in the Franz LISP dialect of the computer |language
LISP. In this paper this software is called the VWS2 system. Six principal modules
comprise the VWS2 system: the Production Management Operating System (the control
system), the State Table Editor, the Equipment Program Generator, the Part Design Editor,
the Process Planner, and the Data Execution module.

The Part Design Editor, Process Planning and Data Execution modules, as well as other
system capabilities, may be accessed by the user through a small user interface called
vws _cadm. Vws_cadm asks the user questions about what the user wants to do and then
activates the appropriate module or other capability accordingly.

To produce a part from scratch, the user sits at the Sun workstation and creates a design
using the Part Design Editor. The Process Planner is then called to write a plan for how to
machine a part of that design. Next NC-code is generated automatically from the design and
the plan by the Data Execution module. Finally the user tells the control system to make the
part. The control system coordinates the activities of the workstation equipment so that the
part blank is loaded onto the milling machine, the NC-code is sent to the milling machine
and executed (making the part), and the finished part is unloaded.

4. DESIGN PROTOCOL

The VWS2 system uses a feature-based design protocol. The design protocol is described
indetail in[K&J2]. Thedesign of apart isexpressed as alist of features on a piece of stock.
The piece of stock isalwaysarectangular block. The design protocol currently assumes that
all features are being made on one side of the block.

Although all the features and subfeatures are purely geometric, they were selected to be
included in the system on the basis of being features commonly found on machined parts
that could be produced in one, or at most a very few, machining operations. Each feature
and subfeature is a removed volume.

The design of a part is a purely geometric description of the shape of a part and gives no
idea of what machining operations are required to make the part.

The primary features in the system in September, 1987 are: chamfer_out, groove, hole,
pocket, straight_groove, text, contour_groove, contour_pocket, and side_contour. There
are also subfeatures which may be made on the primary features: chamfer_out, chamfer_in,
countersink, and thread. A feature is specified in the system by giving its name and the
values of several parameters which specify its location, shape, and size.
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The design protocol includes the use of "reference features'. If feature A isto be made at
the bottom of feature B, then one of the parameters of feature A is "reference feature", and
the value of that parameter is the feature number of feature B. Normally, if B is the
reference feature for A, the outline of feature A must fit within the outline of feature B, and
the bottom of feature B must be flat (there are exceptions in special cases).

Although a design could be prepared according to the VWS2 design protocol using a text
editor, the only reasonable way to make a design is by using the VWS2 Design Editor
module. The Design Editor isafriendly system which runs on a Sun computer that engages
the user in a dialog to find out what the user wants to make and prepares the design
document for the user. An example design is shown in Table 3 (page 10).

5. PROCESS PLAN PROTOCOL

The core of a process plan which is to be executed by the Data Execution module is a set of
operations, or "steps”, that must be carried out in order to make some or all of the features
from adesign on aworkpiece. In addition to a set of steps, a process plan may also have (1)
a list of requirements of tools and workpieces needed to carry out the plan, (2)
administrative information such as the name of the plan, the id_number of the design to
which the plan is tied, the version number, etc., and (3) alist of parameters used in the plan
(if the plan is parametric).

Each step in a plan describes some operation to be carried out. The description is given by
naming the operation (which we will call the "work element") and giving the names and
values of several parameters required to describe the operation fully. Each work element
hasits own set of parameters, but a given parameter type may be used for many or all types
of work elements. A bare-bones step includes the work element, the number of the feature
from the design to which the work element applies, the name of the type of tool needed to
carry out the step, and alist of "precedent steps” which must be carried out before the step
under consideration. Additional information which is added at some point usually includes
a changer slot from the milling machine in which atool of the correct type may be found,
spindle speed, and feed rate.

For steps which refer to features, most or all of the geometric information needed to carry
out the step is extracted from the design, and is not carried in the process plan. For steps
which do not refer to features (such as zero-setting steps), geometric information is carried
in the process plan.

In the VWS2 system, a process plan may have two formats: the standard AMRF format or
aLISP-readable format. To be executed, a plan must be in the LISP environment in L1SP-
readable format. A reading facility which sets up a LI1SP-readable plan in the environment
from afilein standard AMRF format is part of the VWS2 system, asisafacility which prints
a standard file from a LISP-readable plan in the environment.

A detailed explanation of process plans for the VWS milling machine, including examples,
isgivenin [KRA1]. Anexample of aLlSP-readable process plan isshown in Table 2 (page 9).
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6. SUMMARY OF DATA EXECUTION MODULE CAPABILITIES

The VWS2 Data Execution Module is best known as the automatic NC-code generator used
in the VWS. However, it does much more than generate NC-code. The only important
action the module always takes when it runs is to build a data model of a workpiece. An
example of a model is shown in the bottom half of Table 1. In addition to building this
model, the module has five processing and output options: (1) write NC-code, (2) enhance
aprocess plan, (3) verify aprocess plan, (4) graphically emulate execution of a process plan,
and (5) save the model. The five options are independent; any combination of them may be
used simultaneously.

The enhancement of a process plan has several elements: adding or deleting steps of the
plan, picking a specific changer slot for each tool, and cal cul ating spindle speeds, feed rates,
stepovers, and vertical pass depths, if necessary. The input process plan may already be
enhanced. Any step of the input process plan may already contain values for any of: spindle
speed, feed rate, stepover, or vertical pass depth.

The incoming workpiece may be a partly machined part, as long as the data model of the
workpieceis correct. The same process plan may be used to finish many differently shaped
partly machined workpieces, as long the features on the incoming workpieces are all given
in the design which isnamed in the plan. Thisisaccomplished by simply removing the steps
of the plan needed to produce any feature that is already present on the incoming workpiece.

Conversely, a process plan does not need to produce all the features from a design. Thus,
the VWS may produce partly machined parts. The system will produce a data set correctly
representing a partly machined part.

Once the VWS2 LISP environment is set up on a Sun computer, the Data Execution module
may be used via the "vws cadm™ friendly front end, or by a LISP function call to
"execute plan".

With all five options on, the Data Execution module, running in uncompiled LISP on a Sun
3/160 microcomputer with 6 megabytes of on-board memory and floating point hardware,
will write NC-code at the rate of about 200 lines per minute. With only the NC-coding
option on the rate roughly doubles.
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7. RELATED READING

This paper is one of about a dozen papers being prepared as part of the AMRF
documentation to describe all aspects of the VWS. The othersare [JUN], [KRA1], [KRAS],
[KRA4], [KRA5], [K&J2], [K&S2], [LOVE], [NA&J], and [RUDD]. Other papers,
prepared for professional meetings, also describe the VWS [KRAZ2], [K&J1], and [K& S1].

The brief descriptions of the design protocol and the process plan protocol given above in
sections 4 and 5 are not adequate for a detailed understanding of the Data Execution Module.
The reader who wants detailsisreferred to [K&J1] or [K& J2] for the design protocol and to
[KRA1] or [KRAZ2] for the process plan protocol.

Some of the functions of the Data Execution module are not described in detail in this paper.
In particular, process plan enhancement is dealt with in Chapter V of the process planning
paper [KRA1], and seven types of verification carried out in the module are described in
various chapters of the verification paper [K& S2].
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II. DATA EXECUTION MODULE OPERATION

1. INTRODUCTION

The Data Execution module capabilities were summarized in section 6 of Chapter |. The
operation of the module may be roughly divided into three phases: initialization, stepping
through the process plan, and termination. The module may be used directly from LISP. An
example of afunction call to the module is:

(execute plan 'datex_plan 'datex_part 'datxnc 'datex_plan_enhanced’ soft t 'vise 'top_of part)

This function call means: run the Data Execution module on the plan named "datex_plan",
using the workpiece "datex_part". Write NC-code to the file "datxnc". Save the enhanced
version of the planin the file named "datex_plan_enhanced". Put verification on soft. Draw
apicture emulating the machining process. Assume for the purposes of verification and NC-
code writing that the part is to be milled in the vise. Establish z-zero by probing the top of
the part (and, possibly, offsetting from there).

What happens when this function call is made is shown in several tables and figures
throughout this chapter. The function call itself appears at the top of Table 1. That table
shows the messages sent back to the user during module operation. In atest run, the module
carried out the function call in just over one minute. The process plan "datex_plan" which
is being executed is shown in Table 2. To illustrate the flexibility of the module, this
process plan contains non-sequential precedent steps, one speed, and one pass depth. This
plan is not much like the one produced by the VWS2 Process Planning module, which would
use sequential precedent steps and put speeds and pass depths in either all or none of the
steps for which they are appropriate.

The name of the design does not appear in the function call. The name of the design isfound
in the process plan. In the example the design is called "datex_design”. The data used by
the system giving the design and the workpiece are shown in Table 3. The design has three
featuresin it: a countersunk hole, a chamfered pocket to the right of the hole, and the letter
"D" at the bottom of the pocket. The workpiece has already been partially machined. It has
the holein it, but the hole is not yet countersunk. Figure 1 (page 17) shows a picture of the
part without the letter "D". The process plan is a plan for making the hole and the pocket,
but not the letter "D".

In actual use, the vws_cadm friendly front end would normally be used to run the module,
rather than making adirect function call. Thisisagreat deal easier than trying to remember
what all those arguments mean and what the correct order is. In the test run, it took about
30 seconds to answer vws_cadm’s questions so that it could construct the function call.
Using vws_cadm has the added advantage that vws _cadm will print the description of the
finished workpiece to a file if the user wishes. The direct function call results in the
workpiece description being the value returned by LISP. Thelast half of Table 1 isthefinal
workpiece description.
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Table 1. Data Execution Screen Messages

(pp_plist (execute_plan’datex_plan ’datex_part ' datxnc
"datex_plan_enhanced 'soft t "vise 'top_of part))

Starting design enhancement.

Design enhancement completed successfully.
Feature 1 holeis OK.

Feature 2 pocket is OK.

Feature 3 text is OK.

Starting process plan enhancement, phase 1.

Process plan enhancement, phase 1, completed successfully.

Starting process plan enhancement, phase 2.

Process plan enhancement, phase 2, completed successfully.

Fixturing is OK.

Step 1initialize planisOK.
Feature 1 holeis OK.

Step 2 setO_corner is OK.

Step 3set0_zisOK.

Step 5 mill_pocket is OK.

Step 4 machine_chamfer_inis OK.
Step 6 machine_countersink is OK.
Step 7 close_planis OK.

(workpiece
features (features
1 (1
countersink_diameter 0.5
feature type hole
center_x 1
center_y 1
diameter 0.316
depth 0.6
bottom_type conical)
2 (2
chamfer_in_depth  0.06
feature type pocket_corners
upper_|_x 2
upper_|_y 25
lower r x 5
lower r y 0.5
depth 0.3
corner_radius 0.4))
header  (header

workpiece id datex_part
design_id datex_design
material  aluminum
block_size (block_size

length 6.95
width  2.975
height 0.735)

description "data execution demo part"))

«—

«—

INITIAL COMMAND FROM USER

ENHANCE THE DESIGN

VERIFY THE DESIGN

ENHANCE THE PROCESS PLAN

CHECK FIXTURING
VERIFY STEP1 & INITIALIZE
VERIFY WORKPIECE

VERIFY & EXECUTE PLAN

PRINT OUT WORKPIECE
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Table 2. Process Plan

This table shows the L1SP-readable unenhanced process plan file for the example in
Chapter II.

(setplist "datex_plan’(
header (header
plan_id datex_plan
design_id datex_design
material  aluminum)
steps (steps
1 (1 work element initialize plan
prog_name "data execution demo design")
2 (2 work element setO corner
tool type id probe 0.25

corner 1
x_offset 0.0
y_offset 0.0
near_x 16.825
near_y 7.425

precedent_steps (1))
3 (3 work element  machine_chamfer_in

feature id 2
tool type id chamfer_0.375 3 abs
Speed 5103

precedent_steps (4 2))

4 (4 work element  mill_pocket
feature id 2
tool_type id end_mill_0.625 2 ab
precedent_steps (5))

5 (5 work _element drill_hole
feature id 1
tool type id drill_0.316 2 abs
pass_depth 0.3
precedent_steps (2))

6 (6 work element machine countersink
feature id 1
tool_type id countersink_0.75 1 ab
precedent_steps (3 2 4))

7 (7 work_element close plan
precedent_steps (6 3)))

tool _requirements (probe 0.25 end mill_0.625 2 ab drill_0.316 2 abs
chamfer_0.375_3 abs countersink_0.75 1 ab)))

-9-
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Table 3. Design and Workpiece

This table shows the L1SP-readabl e files which set up a design and a workpiece for

the example used in Chapter |1.

The Design

(setplist 'datex_design’(
features (features

1(1
feature type hole
center_x 1
center_y 1
diameter 0.316
depth 0.6
bottom_type conical
countersink_diameter 0.5)
2 (2
feature_type pocket_corners
upper_|_x 2
upper_|_y 2.5
lower r X 5
lower r_y 0.5
depth 0.3
corner_radius 04
chamfer_in_depth 0.06)
33
feature_type text
text "d"
font broad
lower_| x 3
lower_|_y 1
height 1
depth 0.02
line_width 0.1356466
reference feature 2)
header  (header
design id datex_design
material  auminum
block_size (block_size
length  6.95
width  2.975
height  0.735)

description "data execution demo design")))

The Workpiece

(setplist ' datex_part ’ (
features (features

1(1

feature_type hole
center_x 1
center_y 1
diameter 0.316
depth 0.6
bottom_type conical))

header  (header

workpiece id datex_part
design_id datex_design

material aluminum

block_size  (block_size
length  6.95
width  2.975

height  0.735)
description "data execution demo part")))

-10-
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2. INITIALIZATION
2.1. Overview

During initialization of the execution of a process plan:

A. The design is enhanced.

B. If the verification option is on, the design is verified.

C. The process plan is enhanced (unless the input plan has been enhanced).

D. Step 1 of the plan (initialize_plan) is carried out.

E. If the drawing option is on, the initial view of the workpiece is drawn, and, if the
verification option is also on, the workpiece is verified.

F. The workpiece model is set up.

G. The model of the fixturing, including obstacles, is set up.

H. If the NC-coding option is on, a working data base is set up and the first seven lines
of pseudocode are generated.

The verification operations carried out during initialization are quite extensive. They are
described in Chapter 1X of the verification paper [K& S2].

Design enhancement is also extensive. It is described in Chapter 11 of the design protocol
paper [K& J2].

2.2. Workpiece Model

Workpiece models are described in Chapter 11, section 2.12, of [K& J2]. To make the initial
model of the workpiece, the module copies the property list of the workpiece named in the
function call. If the workpiece is too tall, its height is changed to the height given in the
design. If the workpiece has a "slab", the slab is removed. These two things are done in
conjunction with adding steps to the process plan, as described next.

When the module is used from vws_cadm, the user is asked to name aworkpiece. A check
is made of the property list of that name. If the property list exists and is in good format,
that model isused. If thereisno property list for the name, vws_cadm makes one, assuming
that the workpiece is a blank block the same size as the one specified in the design.

2.3. Process Plan Enhancement

Process plan enhancement takes place in two phases. These are described in detail in
Chapter V of the process planning paper [KRA1]. In this section we will follow what
happens to our example. Table 2 and Table 4 show the "before and after” of enhancement.
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In phase 1 of enhancement, because the user has asked to have the top of the workpiece used
for establishing z-zero, a new step, setO_z, is added as step 3. Then the plan is renumbered
so that there are no duplicate numbers. Precedent step numbers must be updated as part of
the renumbering. In order that setO_z be carried out immediately after step 2 (which is
set0_corner), the precedent step for step 3 is step 2, and any operation which has step 2 as
a precedent step has step 3 added to its list of precedent steps.

If the workpiece in our example had no features and was too thick, a face milling operation
would have been added to bring the workpiece down to the proper thickness. If the
workpiece had had the "slab" property (see the design protocol paper [K&J2] Chapter 11,
section 2.12), aface milling operation to remove the slab and a setO_corner operation to find
the block below the slab would have been added.

In phase 2 of enhancement, the module looks at the process plan and culls out any steps that
would make features or subfeatures which are already on the workpiece. In our example,
step 5 of the process plan is a hole drilling operation to make feature 1. Since feature 1 is
already in the part, step 5 is removed from the process plan. After removal, any other step
which had the removed step as a precedent step (step 4 in the example) has the precedent
steps for the removed step added to its list of precedent steps. Thus, step 2 is added to the
list of precedent steps of step 4 in our example. Then the plan is renumbered so that there
are no gaps in the numbering. Precedent step numbers must be updated as part of the
renumbering.

Notice that the countersinking step is not culled out because the hole in the workpiece is not
yet countersunk.

Although only one step has been added and one deleted, the net effect on the step numbers
and the precedent steps is significant, as may be seen by comparing these items on Table 2
with the same items from Table 4.

Also in phase 2 of enhancement, the slot number of a changer slot on the milling machine
which has atool of the tool_type id given in each step isinserted in the step. Thisis done
by examining the data model of the tools currently on the milling machine. If any necessary
tool is not on the machine, an error message is sent and the module quits work. Also in
phase 2, any step which requires a stepover, speed, feed rate or pass_depth, has values for
the appropriate parameters added. If there are existing values, such as the speed for the
chamfering operation, these values are used.

Finally a new tool_requirements list is prepared from the enhanced steps. In our example,

since the hole drilling step has been deleted, the drill which appears in the list of tool
requirements for the unenhanced plan does not appear in the enhanced plan.
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TABLE 4. Enhanced Process Plan

This table shows the L1SP-readabl e enhanced process plan file for the example of

Chapter 11.

(setplist 'datex_plan’ (

header (header
plan_id datex_plan
design id datex_design
material  aluminum)
steps (steps
1@
work_element initialize_plan
prog_name
"data execution demo design")
2 (2
work_element  setO _corner
tool_type id probe 0.25
changer_slot 40
corner 1
x_offset 0.0
y_offset 0.0
near_x 16.825
near_y 7.425
precedent_steps (1))
3 3
work_element  setO z
tool_type_id probe_0.25
changer_slot 40
x_loc 20.3
y_loc 8.9125
offset 0.0

precedent_steps (2))

4 (4
work_element  machine_chamfer_in
feature id 2
tool_type id chamfer_0.375 3 abs
changer dot 6
Speed 5103
feed rate 28
precedent_steps (35 2))
5 (5
work_element  mill_pocket
feature id 2
tool_type id end mill_0.625 2 ab
changer dlot 12
stepover 0.3125
Speed 2750
feed rate 17
pass_depth 0.3125

6 (6

7 (7

tool_requirements (

precedent_steps (3 2))

work_element machine_countersink
feature id 1

tool_type id countersink_0.75 1 ab
changer slot 4

stepover 0.375

Speed 2291

feed rate 5

precedent_steps (34 2 5))

work_element  close_plan
precedent_steps (6 4)))

probe_0.25
chamfer_0.375 3 abs
end_mill_0.625 2 ab
countersink_0.75 1 ab)))
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2.4. Process Plan Seguencing

A list of step numbers giving the order in which the plan will actually be executed is
constructed during initialization as follows. This sequencing is done using a working copy
of the enhanced plan.

A. ltisassumed that step 1, initialize plan, will be executed first.

B. Step 1isremoved from the list of precedent steps of every step.

C. All the steps which have no remaining precedent steps are found and ordered so as
to minimize tool changes. This group of step numbers is added to the sequence
number list, and the steps themselves are removed from the working copy of the plan.

D. Thenumbersfound in C are removed from the precedent steps of the steps left in the
working copy of the plan.

Items C and D repeated until the group of steps found in C is empty. If there are any steps
left in the working copy of the plan at this point, there must have been an error in the
assignment of precedent steps in the original process plan, so an error message is returned
and the module stops work. If the working copy is now empty, the sequence list is returned.

This method of sequencing was chosen to ensure that precedent requirements are followed,
to check the validity of the requirements, and to give an efficient sequence. Alternativesto
steps C and D which result in even fewer tool changes are feasible but more complicated,
none has been tried.

Asmay be seen in Table 1 and Table 5, the order in our exampleis 1, 2, 3,5, 4, 6, 7.

2.5. Data Base Initialization

The VWS2 system includes a "world model”. Thisis a hierarchically arranged database of
information about the workstation. When the Data Execution module starts up, the
"fixturing" branch of the world model is reset by looking at the function call to see whether
the vise or the pallet area is being used, and extracting the correct description from
elsewhere in the world model. If the viseis being used, the description of the obstaclesin
the vicinity of the fixture is modified according to the size of the workpiece. This is
described in detail in Chapter VI of the verification paper [K& S2].

Several large LISP property lists are set up under the following names:
A. drawp - for use by the graphics system if the drawing option is on
B. mockup - for use by execute plan
C. mtool - for use by the NC-coding system.
3. STEPPING THROUGH THE PROCESS PLAN
3.1. Introduction

Once initialization is complete, the Data Execution module feeds the steps of the enhanced
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process plan (in the order specified in the sequence list) into the execute step function,
which handles all but the init_plan and close plan steps. This section describes the
operation of the execute_step function on a single step.

First, if verification ison, the step is verified. If verification fails while verification is "on
hard", or if verification fails while verification is "on soft" and the user elects not to
continue, the module quits.

Second, if the NC-coding option is on, an NC-coding function is called on to write
pseudocode.

Third, if the drawing option is on, and the step requires drawing, a drawing function is
called.

Fourth, the workpiece model is updated. If the update fails, an error message is sent and the
module quits. Note that workpiece updating is the only thing that always happens. Of
course, some steps have no effect on the model, but that is not determined by execute_step
itself.

3.2. Function Call Assembly

A somewhat intricate method of constructing function calls is used for verification, NC-
coding and drawing. Each function call is built from four parts.

The first part is the name of the function. It is obtained from the "machine_ops" database.

The second part is the values of parameters present in the step. The names of these are
obtained from the "machine_ops" database, and then their values are extracted from the step.

The third part is the values of parameters present in the feature named in the step. The
names of these are obtained from the "machine_ops" database and then their values are
extracted from the enhanced design.

The fourth part is the values of some local variables present in the execute_step function.
The names of these are obtained from the "machine_ops" database and then the names are
simply evaluated to get the current local value. The drawing system does not use this fourth
part. The fourth part used by the drawing system is the number of the changer slot given in
the step.

To carry out afunction, parts two, three, and four are joined together into a single list, and
the chosen function is applied to the list (by the LISP "apply" function).

There are 19 machine operations that may be carried out by execute step. Each one has a
verification function and an nc-coding function. Most of them have drawing functions.
Thus, over 50 different functions for verification, NC-coding and drawing may be called
through this function call assembly process.
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4. CLOSING
4.1. Introduction

Stepping through the process plan stops with the next-to-last step on the sequenced list. The
last step on the list must be close _plan or execution of the plan would have aborted earlier.
If verificationison, thisstep isverified. If drawingison, the drawing isremasked. If NC-
coding is on the last six lines of pseudocode are written, and the pseudocode is printed as
real code to afile. The features on the part model, which may have been added in random
order, are sorted into numerical order. The property list of "mockup” is wiped out. The
drawing is not wiped out but is left on the screen for further use. If drawing is on, a copy
of the pseudocode will be given to the drawing system.

4.2. Printing Pseudocode

If execution of the enhanced process plan has continued to completion and the NC-coding
option is on, pseudocode which was assembled while stepping through the plan will be
printed to the file named in the function call. In our example the file is "datxnc". A copy
of thefileisshown in Table 5. Blocks of code in the table have been shaded and numbered
with the number of the step from the enhanced process plan which caused the code to be
written. Note that the order of the blocks of code is the order shown in Table 1, which was
established the by the module’s plan sequencer.

4.3. Use of Graphics for Flashing and Tool Path

After the end of module execution, three graphics facilities may be used to help the user
understand the machining process better: flash_step, flash_feature, and draw_tool _path. All
three of these are available to the expert user from LISP, but only draw_tool path is
available through vws_cadm.

The LISP command (flash_step 5) will cause the part of the drawing that was generated by
execution of step 5 in the enhanced plan to flash off and on a few times. Any other step
number can be used in place of 5. If nothing was drawn as aresult of step 5, the system will
print a message that says as much.

The LISP command (flash_feature 2) will cause the drawing of feature 2 to flash off and on
afew times. If feature 2 has not been drawn, the system will print a message that says so.

The tool path drawer will draw a picture of the path of the center of the tip of the tool. The
drawing is done from the pseudocode. A full description of tool path drawing is given in
Chapter XII of the verification paper [K&S2]. Magnified examples of tool path drawings
(top view only) are shown in Figure 8 (page 53) and Figure 9 (page 54).
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Figure 1. Data Execution Drawing

view surface

EXECUTION OF PROCESS PLAN ID: datex_plan
FROM THE DESIGN ID: datex_design

USING THE WORKPIECE ID: datex_part

PLAN VERIFICATION IS: on soft

WRITING NC-CODE TO FILE: datxnc.

scale: One grid square equals 1/4 inch.

This figure shows the drawing made during operation of the data execution module.

-17 -



VWS Data Execution

Table 5. NC-Code

n0001 (I1D,PROG,datxnc,data execution demo design,1)
n0002 g53

n0003 p69 = +0.735

N0004 p68 = +0.0 1
n0005 g90 g0 w(p69+(p68-10.5)) m6

n0006 p91 = 1.5

n0007 p12 = 91 m950

n0008 p90=50 p88=-.25 p89=40

n0009 p83=+16.825 p84=+7.425 p85=1

n0010 p70=0

n0011 g53 m9

n0012 g0 g90 m5 m6

n0013 g90 g0 x+36.5 y+15.0

n0014 ! Changing tool to probe for setting x_zero andy_zero
n0015 t(p89) m28 m67 m6

n0016 x(p83) y(p84)

n0017 (GSUB,OUTVWS)

n0018 p66=(p97+0.0) p67=(p98+0.0) 2
n0019 g56 g90 x(p66) y(p67)

n0020 p90=50 p89=40

n0021 p77=+20.3 p78=+8.9125

n0022 g53 m9

n0023 g0 g90 m5 m6

n0024 g90 g0 x+36.5 y+15.0

n0025 g90 t(p89) M28 m67 m6

n0026 ! Changing tool to probe for setting z_zero
n0027 p70=0 x(p77) y(p78)

n0028 (GSUB,INTVWS)

n0029 p91 = (p92+4.424+0.0)

N0030 p12 = 91 M50 3
n0031 g56 g90 x(p66) y(p67)

n0032 ! 0.3 by 3 by 2.0 pocket

n0033 ! Changing tool to 0.625 inch diameter end_mill
n0034 g90 g0 m6 m9

n0035 g53

n0036 g90 g0 x+36.5 y+15.0

n0037 g90 g0 s2750 t12 d12 m3 m6

n0038 g56 g90 x(p66) y(p67)

n0039 m8

n0040 x+4.0 y+1.5

n0041 g0 z+0.1

n0042 g1 z+0.0 f5

n0043 x+3.0 y+1.5 z-0.2679

n0044 x+4.0 y+1.5 z-0.3

n0045 x+3.0y+1.5

n0046 g0 z+1.0

n0047 x+4.0 y+1.5

n0048 z+0.1

n0049 g1 z-0.3 f40 m8 m72

n0050 f17

n0051 x+4.3125 y+1.1875

n0052 x+2.6875

n0053 y+1.8125

n0054 x+4.3125

n0055 y+1.1875

n0056 g1 x+4.6 y+0.875

n0057 g1 x+2.4

n0058 g2 x+2.375 y+0.9 r+0.025

n0059 g1 y+2.1

n0060 g2 x+2.4 y+2.125 r+0.025 5

n0061 g1 x+4.6

n0062 g2 x+4.625 y+2.1 r+0.025
n0063 g1 y+0.9

n0064 g2 x+4.6 y+0.875 r+0.025
n0065 g1 x+4.6 y+0.8225

n0066 gl x+2.4

n0067 g2 x+2.3225 y+0.9 r+0.0775
n0068 g1 y+2.1

n0069 g2 x+2.4 y+2.1775 r+0.0775
n0070 g1 x+4.6

n0071 g2 x+4.6775 y+2.1 r+0.0775
n0072 g1 y+0.9

n0073 g2 x+4.6 y+0.8225 r+0.0775
n0074 g0 z+1.0

n0075 x+4.6 y+0.8125

n0076 z+0.1

n0077 g1 z-0.38

n0078 f17

n0079 g3 x+4.6875 y+0.9 r+0.0875
n0080 g1 y+2.1

n0081 g3 x+4.6 y+2.1875 r+0.0875
n0082 gl x+2.4

n0083 g3 x+2.3125 y+2.1 r+0.0875
n0084 g1 y+0.9

n0085 g3 x+2.4 y+0.8125 r+0.0875
n0086 g1 x+4.6

n0087 ! Changing tool to 0.375 inch diameter chamfer
n0088 g90 g0 m6 M9

n0089 g53

n0090 g90 g0 x+36.5 y+15.0
n0091 g90 g0 s5103 f28 t6 d6 m3 m6
n0092 g56 g90 x(p66) y(p67)
n0093 x+2.4 y+0.5938

n0094 m8

n0095 g0 z+0.1 ! 0.06 wide chamfer
n0096 g1 z-0.1538

n0097 gl x+4.6

n0098 g3 x+4.9062 y+0.9 r+0.3062
n0099 g1 y+2.1

n0100 g3 x+4.6 y+2.4062 r+0.3062
n0101 g1 x+2.4

n0102 g3 x+2.0938 y+2.1 r+0.3062
n0103 g1 y+0.9

n0104 g3 x+2.4 y+0.5938 r+0.3062
n0105 ! Changing tool to 0.75 inch diameter countersink
n0106 g90 g0 m6 m9

n0107 g53

n0108 g90 g0 x+36.5 y+15.0

n0109 g90 g0 s2291 f5 t4 d4 m3 m6
n0110 g56 g90 x(p66) y(p67)

n0111 x+1.0 y+1.0

n0112 m8

n0113 g82 r+0.1 z-0.2744 d4 p3=.5! 0.5 dia
n0114 g53 m9 m5

n0115 g90 g0 w-9.0 m6

n0116 p91 = 0.0

n0117 p12 = 91 m950

n0118 g90 g0 x+0.5 y+19.5

n0119 (END,PROG)

5

(cont.)
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5. DATA REQUIREMENTS

This section briefly describes data requirements of the Data Execution module. The data
requirements of the VWS2 system and the proper formats for data structures are given in
detail in [KRAA4].

Two portions of the VWS2 world model are particularly important: the description of the
tools currently in the milling machine, and the description of the geometry of the fixturing area.

For each tool in the machine, the following items (and others not being used) are in the
world model: id, changer_slot, type, tool type id, cutting_depth, exposed_length,
cutting_diameter, shank_diameter, tip description, number of flutes, materials the tool can
cut, and material the tool is made of. Aslong as a process plan uses only tools that are
already in the tool magazine of the milling machine, the tooling information in the world
model can beregarded as fixed, and once the model is set up, the user does not need to worry
about it.

The fixturing geometry information includes: obstacles, maximum run-offs in five
directions, and asafe z plane. Itisdescribed in detail in [K&S2], Chapter VI, section 2.

The module requires a process plan, a design, and a workpiece description. Examples of
these have already been shown in Table 2 and Table 3. An enhanced process plan (an
example is shown in Table 4) may be either input to the module or output from it.

The module makes heavy use of the "machine_ops" database, as described in section 3.

If verification is used, the "features' database must be set up. This database includes

information about tests for parameters, names of feature verifiers, and names of reference
feature fit functions.
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1. WORKPIECE MODEL

1. INITIALIZATION

The workpiece model, construction of which is the core of the Data Execution module, is
initialized simply by copying the workpiece description of the workpiece named in the call
to execute plan. The module checks that the workpiece features are all features from the
design (possibly missing subfeatures). The module prints an error message and halts if this
isnot so. Thedesign and the material named in the workpiece description must match those
in the process plan. If verification is on, the workpiece is verified.

2. CONSTRUCTION

As a step of the enhanced process plan is executed, any feature or subfeature produced by
the step is copied from the unenhanced design onto the workpiece model. If the step is
making a primary feature (such as a pocket) which has a subfeature (such as a chamfer), the
subfeature is not copied to the model until the step which makes the subfeature is carried out.

3. USES

When execution is completed, the model may be saved as a description of the workpiece.
Also, the model is used to check that a step is reasonable to execute, as follows.

If a step makes a feature which has a reference feature, the model is checked to be sure the
reference feature already exists. If a step makes a subfeature, the model is checked to be
sure the parent feature already exists. In either case, if the required feature is not present
on the model, an error message is sent and the module quits work.

If a step makes a feature or subfeature that is already present on the model, once again an
error message is sent and the module quits work.

If the step is a counterbore, the hole being counterbored must already exist or an error
message is sent and the module quits work.
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V. MACHINING

1. OVERVIEW

The approach to machining embodied in the VWS2 system is partly the result of evolution
and testing, and partly the application of the advice of expert machinists by the authors and
their predecessor, Mr. Alton Quist of General Dynamics. The authors consulted with expert
machinists Mr. Robert Lach of NBS, and Mr. Ken Woodall of Texas Instruments. Any
misapplication of their adviceis dueto the authors. Mr. Quist also used the advice of expert
machinists.

Most data for surface speeds and amount cut per tooth were extracted from published
handbooks, as noted below. On the advice of both machinists, however, the published
values for pass depths and stepovers were not used.

2. VERTICAL PASSINCREMENTS

If afeatureisfairly deep, it will be unsafe to try to machine the entire depth of the feature
at once. Instead, the feature is machined in several passes, with a small amount removed by
each pass. The depth which can be milled on each pass is dependent upon the size and type
of tool. For drills, the pass depth is one tool diameter, whereas for end mills and ball-nosed
end mills the pass depth is half the tool diameter. For fly cutters the pass depth is 0.01
inches or the cutting depth of the tool, whichever is smaller. For face mills, the pass depth
is 0.1 inches or the cutting depth of the tool, whichever is smaller.

Vertical pass increments are used for the following types of machining: slot milling,
peripheral milling, drilling, face milling, and fly cutting. The name of the parameter used
to indicate the vertical passincrement is "pass_depth”.

3. TYPESOF METAL CUTTING

3.1. Overview
This subsection discusses types of metal cutting used in the VWS2 system. There are other
types which may be performed by a milling machine but are not used in the system (reaming
and rough milling, for example). These are not discussed here.
All but three of the machining operations specified in process plans require only a single
type of cutting. Mill_pocket, mill_contour_pocket, and mill_side_contour, however, each

require three types of cutting (slot milling, peripheral milling, and finish milling) in most
circumstances.
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3.2. Slot Milling
3.2.1. Introduction

Slot milling is a material removal operation performed with an end mill or a ball nosed end
mill in which the tool is cutting across the entire width of the tool. In other words, the tool
is cutting a slot.

Figure 2 shows a cross-sectional view of a milling tool with four teeth which is cutting a

slot. The figure describes the meaning of four basic milling terms: inches per tooth, feed
rate, spindle speed, and surface speed. These four terms also apply to peripheral milling.

Figure 2. Slot Milling

Thisfigureisacross-sectional view of amilling tool with four teeth cutting aslot. The
tool, shown in light gray, ismoving from left to right and rotating clockwise. The dark
gray patch isthe material that will be removed by the rightmost tooth as it rotates one
more quarter turn. The length of the flat side of that patch is the thickness of the chip
being removed (the "inches per tooth" parameter used in most machining handbooks).
The rate at which the tool moves from left to right is called the "feed rate". The rate
of revolution of the tool (usually expressed in rpm) is the spindle speed. The speed at
which the tip of atooth is moving is called "surface speed”, or simply the "speed".
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3.2.2. Ramping

When a slot milling operation is performed, the first step must necessarily be to get the tool
into the material at a certain depth. Since end mills do not cut effectively with the center of
the tool, simply plunging the end mill into the material vertically is usually unsafe. In soft
materials like aluminum, it will work, but the result is that the material under the center of
the tool is not cut, but simply pushed out of the way. In order to solve this problem, the tool
is moved diagonally into the material, creating aramp. This allows more cutting to be done
with the side of the tool. The maximum angle at which this ramping may be done depends
on the hardness of the material. For the VWS2 system, the values used are 15 degrees for
aluminum and brass, and 5 degrees for steel and monel. In some cases where it is
convenient, a smaller angle is used.

Ramping is used for the slot milling phase of making pockets, contour pockets, and side
contours. Ramping is also used for all types of grooves (which are made by pure slot
milling). In principle, ramping is not needed when the slot to be milled intersects the side
of the part, since in that case the tool does not need to move vertically into the material -- it
can move to the correct depth outside the part. In practice, since changing the cutting
algorithms to suit the circumstances is difficult, ramping is used even if the feature passes
outside the part.

3.3. Peripheral Milling

3.3.1. Introduction

Peripheral milling isamaterial removal operation performed with an end mill or aball nosed
end mill in which the tool is cutting more material away from an existing edge. The tool
follows a path around the periphery of the material being removed, hence the name
"peripheral milling".

3.3.2. Conventional vs. Climb Cutting

Peripheral milling may be done with either conventional or climb cutting. The distinction
between conventional cutting and climb cutting is illustrated in Figure 3 and Figure 4.

In climb cutting the material being cut is to the right of the path of the tool (for tools that
turn clockwise, which is the norm) and the teeth of the tool first contact the part at the wide
end of the chip being removed. Climb cutting may lead to tool chatter. Climb cutting tends
to force the tool away from the material being cut.

In conventional cutting the material being cut is to the left of the path of the tool and the
teeth of the tool first contact the part at the narrow end of the chip being removed.
Conventional cutting tends to pull the tool into the material being cut.

The distinction between these two types of cutting also applies to chamfering and face
milling.
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3.3.3. Stepover

When alot of material isto be removed by peripheral milling, a number of passes are made
with the tool. Between each pass the tool is moved horizontally so that the same size bite
is taken by the tool on each pass. The horizontal distance between the tool paths on
successive passesis called the "stepover”. The size of the stepover is determined by the tool
size and the material being milled. For aluminum, brass and steel, the stepover is half the
tool diameter. For monel it isonefourth of the tool diameter. Stepoversare shownin Figure
3 and Figure 4.

According to our expert machinists, a larger stepover is feasible with conventional cutting
than with climb cutting because of the possibility of chatter in climb cutting. Thisled usto
structure our cutting algorithms so than only conventional peripheral milling is done.

Stepover applies to face milling as well as to peripheral milling.
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Figure 3. Climb-Cut Peripheral Milling

This figure is a cross-sectional view of a milling tool with four teeth which is
doing climb-cut peripheral milling. The tool, shown in light gray, is moving
from left to right and rotating clockwise. The dark gray patch is the material
that will be removed by the rightmost tooth as it rotates one more quarter turn.
The double-headed arrow at the right shows the stepover of this cut.

Notice that the rightmost tooth is going to contact the material at the wide end
of the patch. Thisisthe hallmark of climb cutting and may lead to tool chatter.
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Figure 4. Conventional Peripheral Milling

Thisfigure is a cross-sectional view of a milling tool with four teeth which is
doing conventional peripheral milling. The tool, shown in light gray, moves
from left to right and rotates clockwise. The dark gray patch isthe material that
will be removed by the topmost tooth as it rotates one more quarter turn. The
double-headed arrow at the right shows the stepover of this cut.

Notice that the topmost tooth is going to contact the material at the narrow end
of the patch. Thisisthe hallmark of conventional cutting.
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3.4. Finish Milling

Finish milling is atype of peripheral milling in which an end mill is used to make one last
light cut at full depth on a pocket, contour pocket, or side contour. The size of the stepover
is normally 0.01 inch in the VWS2 system. Finish milling is normally preceded by slot
milling and peripheral milling.

Without finish milling, features made in several vertical passes often have horizontal lines
on the walls of the feature, one line at the bottom of each pass.

3.5. Drilling

In drilling (sometimes called twist drilling by other authors), a drill with a conical tip cuts
around hole in the material. The actual cutting is done by the tip of the drill only. In the
VWS2 system, all drills are assumed to have an included angle of 118 degrees at the tip, the
standard angle.

A passdepthisused indrilling. Thedrill isretracted for amoment between passes to allow
cutting fluid to re-enter the hole. Otherwise, the drill tip would not be properly lubricated.

3.6. Tapping

In tapping, atool with a screw thread on the outside is used to form threads on the inside of
ahole. Thetool isalways called atap, but it may work either by cutting material out of the
hole or by deforming the material inside the hole. In the former case, the tool has grooves
on its outside parallel to the axis of the tool. In the latter case there are no grooves and the
tool iscalled a"roll form tap". The VWS2 system is set up for right-handed threads only.

On the Monarch vertical milling machine used in the VWS, tapping is performed by pushing
the tool lightly down into the hole with air pressure while turning the spindle clockwise.
The tool literally screws itself down into the hole. When the tap reaches the desired depth,
the spindle reverses and screws the tool out of the hole.

3.7. Countersinking

In a countersinking operation, atool with a conical tip isinserted in the center of an existing
hole so that the edge of the hole is cut away. In the VWS2 system the included angle at the
tip of the countersink is always 82 degrees, since that is the included angle of the head of a
standard machine bolt.

3.8. Chamfering

In a chamfering operation a sharp edge on a part is blunted by milling alittle of it away. In
the VWS2 system, the edge is always the 90 degree angle between a vertical surface and a
horizontal surface -- the edge between the walls of a pocket and the top of the part, for
example. In the VWS2 system, a conical chamfer tool with a 90 degree included angle at
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the tip is passed around the edge to mill it flat at a 45 degree angle to both existing surfaces.
In principle, any other angle might be used, or the edge might be rounded rather than
flattened, but only the flat 45 degree chamfer has been implemented.

3.9. Center Drilling

A center drilling operation is performed to make a small starting hole for adrill. It is made
with a center drill, which isarigid tool with a conical tip. The tip angle of the center drill
should be smaller than the tip angle of thedrill. Inthe VWS these angles are 90 degrees and
118 degrees, respectively.

Since drills usually have a high length to diameter ratio, they are usually flexible and tend
to wander across the surface of a part before the cut starts. When the entry point of a hole
is off center, the entire drill bends during cutting, and the axis of the hole is tilted from the
original axis of the drill. The bending may break the drill. Center drilling prevents this
wandering. Thus, center drilling improves the accuracy of the location of a hole, helps keep
the axis of the hole aligned correctly, and helps prevent drill breakage.

3.10. Counterboring

A counterboring operation is performed to finish up an existing hole. Anend mill isplunged
into the hole as deeply as desired (but not deeper than the existing hole). As used in the
VWS2 system, the existing hole must be the same diameter as the end mill. Thisis not a
requirement for counterboring in principle and is imposed to keep life simple for the VWS2
modeling system.

3.11. Face Milling

Face milling isabulk material removal operation which leaves agood finish. Normally, the
entire top surface of a part will be removed in a face milling operation, but the only
requirement is that the material to be removed must be accessible from the side (since aface
mill will not cut vertically). A singleface milling cut may remove up to 0.1 inch of material.
Typical sizefor aface mill isoneto threeinchesin diameter. A face mill will typically have
four to eight cutting teeth.

3.12. Fly Cutting

Fly cutting is a surfacing operation. It is performed to give a high quality surface finish or
to remove small irregularities, not to remove a lot of material. Normally a fly cut will
remove 0.005 to 0.01 inch of material from the entire top surface of apart. A fly cutter isa
tool with one tooth at the end of an arm. The fly cutter used in the VWS has a four inch
diameter.
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4. SPEEDS AND FEED RATES

Spindle speeds for the different operations were calculated using data from the Machining
DataHandbook, [METC], published by Metcut Research Associates, Inc., along with advice
from experienced machinists. A range of values for surface speed are given in the book,
depending on the hardness of the material being machined. Since the hardness of the
material isnot known in the system, the value used for surface speed was slightly lower than
the value given for the hardest material of the given type in the relevant hardnessrange. The
spindle speed in revolutions per minute is then calculated as the surface speed (feet per
minute) times 12 (inches per foot) divided by the circumference (inches per revolution = pi
times cutter_diameter in inches). The cutter_diameter is halved for chamfers, since cutting
is done starting at the middle of the tool, where the diameter is half the diameter of the tool.
The maximum spindle speed allowed is 5200 rpm.

Feed rates were calculated using data from the same sources. The values for feed rates in
inches per tooth were chosen in the same way as the values for surface speed. The feed rate
in inches per minute is then calculated as the feed (inches per tooth) times the number of
flutes (teeth per revolution) times the spindle speed (revolutions per minute). For drills, end
mills, and chamfers, the feed was also multiplied by a scaling factor of the tool diameter in
inches. This reduces the feed rate for smaller tools. For taps, the feed rate is always 300,
since thisis required by the canned cycle used to do the tapping.

Both spindle speeds and feed rates depend upon the type of material being milled, so in both
cases, the top-level function for calculating the values calls a subordinate function which is
appropriate for the given type of material.

5. ZERO FINDING

5.1. Introduction
The origin of coordinates for machining is at the front left top corner of the workpiece. This
is the same xy-location as in the coordinates for the design protocol, but the z-location in
the design protocol is at the bottom of the workpiece. The setting of the xy-zero isdonein
one step. Setting z-zero is a another, very different operation.

5.2. Setting X-Zero and Y-Zero

5.2.1. Introduction

When aworkpiece is placed in the vise on the milling machine, it is centered in the vise to
within plus or minus roughly an eighth of an inch. The probe is used to locate the part
exactly. There are two geometric configurations that may be probed: corners and holes. In
both cases the surface of the workpiece in the vicinity must be roughly flat.
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5.2.2. Probing a Corner

A corner to be probed must be a convex corner formed by the intersection of a plane parallel
to the xz-plane with aplane parallel to theyz-plane. Asshownin Figure 5a(page 34), which
isatop view of apart, thisisyour garden variety corner. There are four types of corner that
may be formed this way, corresponding to the four corners of ablock. The corner types are
numbered 1, 2, 3, and 4. On the figure there are three corners of type 1, two of type 2, one
of type 3, and one of type 4. The corner being probed does not have to be an exterior corner
of the workpiece. It may be a configuration appearing inside. Any of the three type 1
corners on the figure could be probed.

To probe acorner, the user must give the approximate location and the type of corner. When
arectangular block is placed in the vise, the approximate location of any of the four corners
may be determined automatically. At the lower left-hand corner, for example, the y-value
is the y-value of the fixed side of the vise (which would be at the top of Figure 5a) minus
the width of the part. The x-value is the x-value of the middle of the vise minus half the
length of the part. Thisisthe corner that is usually probed. The automatic process planner
uses this corner.

The method of probing isillustrated by the schematically drawn tool path at the lower left
corner of the part in Figure 5a. The real tool path overlaps itself and would be hard to
understand.

The probe comes down vertically at a location offset towards the interior of the part from
the given approximate location of the corner until it hits the part. Thisis only to find the
top of the part, not to set z-zero. Then the probe lifts up a little and moves outside the part,
comes down below the top of the part and approaches the part again slowly until it hits.
When it hits, the x-val ue of the contact point isrecorded; that will be x-zero. Next the probe
backs off, moves over to the other side of the corner, and approaches the part again slowly
until it hits. When it hits, the y-value of the contact point is recorded; that will be y-zero.

If some corner other than the lower left-hand corner is probed, the values of x-zero and y-
zero are changed by an x-offset and a y-offset provided in the process plan. Inserting these
offsets in the plan must be done manually and requires knowing the geometry of the part.

5.2.3. Probing aHole

The hole to be probed should be circular. The user must provide the approximate location
and diameter of the hole.

A simplified drawing of the hole probing routine is shown by the three lines crossing the
hole in Figure 5a. The probe routine starts by finding the top of the part (that is why the
approximate diameter is needed - so that the system knows when the probe may be assumed
to be outside the hole); thisis not shown on the figure. Then the probe isinserted into the
hole at the given approximate center (where the vertical line on the left crosses the
horizontal line on the figure). The probe moves back and forth to find y-values where it hits
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the side of the hole. The average of these two valuesis used as a first approximation to the
y-value of the center of the hole. The probe movesto thisy-value and then moves back and
forth in the x-direction to find x-values where it hits the side of the hole. The average of
these x-values is the x-value of the center of the hole, and their difference is the first
approximation to the diameter. Finally the probe moves to the center of the hole and then
moves back and forth in the y-direction to find two more y-values. The average of these
new y-values is the final y-value of the center of the hole and their difference is a second
approximation to the diameter. The average of the two approximations to the diameter is
returned as the diameter (but this value is not being used for anything).

Offsets may be used with hole probing exactly as with corner probing.
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Figure 5. Setting Zero

dih
\/

""""" [ Workpiece thickness " top of workpiece
r [ | 7 """" ] """"""""""""""""""""" bottom of vise jaws
3.0
________ ... topof palet area

1. Head set at W=-9.0 for setting tool length offsets.

2. Head moved 1.5 inches closer to workpiece.

3. Head moved up by thickness of workpiece.

4. Head moved down three inches for milling in pallet area.

b. setting the W-axis
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5.3. Setting Z-Zero

5.3.1. W-axis Setting

The entire head of the milling machine moves vertically with respect to the table of the
machine. Setting z-zero is complicated by location of the head of the machine (the W-axis
setting). There is no absolute zero in the vertical direction on the milling machine which
can be used by the machine tool controller. The quill of the machine (the large metal
cylinder that holds the spindle) has an absolute zero, and the position of the quill iswhat is
controlled by changing a z-value, but the quill’s motion is relative to the current position of
the head of the machine. If the W-axisis set at -8.0 and a program is run that expects the
W-axisto be set at -9.5, all the motions of the tools will be 1.5 inches above where they are
expected to be.

A second complicating factor isthat tool offsets are provided to compensate for the fact that
different tools are different lengths. The tool offsets are set with the W-axis in a given
position, and if the location of the W-axis is changed, the tool offsets must be changed.

Inthe VWS, tool offsets are taken where W=-9.0 and are measured to the bottom of the vise
jaws, where the workpiece sits. However, to be sure that the tools will be able to go through
the bottom of the workpiece without exceeding the limits of quill travel, during cutting the
W-axis is positioned 1.5 inches closer to the top of the workpiece. Thus the W-axis would
be set at W=-10.5 if the top of the workpiece were at the bottom of the vise jaws. Thisalso
means that all tool length offsets must be adjusted by 1.5 inches.

To compensate for the thickness of the workpiece, since NC-programs expect z=0 to be at
the top of the workpiece, the head of the machine is moved upwards along the W-axis by
the design thickness of the workpiece. If the workpieceisthicker than the design thickness,
it will be face milled down to the correct height before any other milling is done. During
this face milling, z-values will be positive.

If machining is to be done in the pallet area, the head of the machine is moved downwards
3.0 inches along the W-axis, since the difference in height between the bottom of the vise
jaws and the top of the pallet holder is 3.0 inches.

The three adjustments of the W-axis and the one adjustment of the tool length offset just
described suffice to set z-zero when z-zero is to be set with respect to the fixture. Figure 5b
shows a side view of the pallet and the vise along with four positions of the spindle as the
head of the machine is moved.
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5.3.2. Setting Z-zero from the Top of the Part

In some cases it will be desirable to set z-zero at the top of the part or some distance offset
from the top of the part. To do this the probe is moved to an xy-location specified by the
user and brought down slowly until it hits the part. Then the z-value of the quill isrecorded.
The difference between this z-value and the corresponding z-value that was recorded when
tool offsets were measured (plus any additional offset the user may have specified) is used
to adjust all the tool length offsets.

6. TOOL CHANGING
All tool changing is done at a fixed xy location on the milling machine that is known to be
free of obstacles. If tools were changed near a part being milled, there would be a risk of
knocking into the part or fixturing. The height of the machine head above thetableis aways
set to be sufficient to allow for changing the longest tools at the preset xy location.

When a tool change is required, the x and y values of the current origin are temporarily
cancelled, so that absolute coordinates are in effect. The spindle is retracted, and flood
coolant is turned off. The spindle is moved to the tool changing location, and the tool is
changed. The Monarch VMC-75 vertical milling center holds 40 tools in its changer, and
any of these may be used. After the new tool isinserted, the originisrestored to its previous
location. For any of the 15 metal cutting operations the flood coolant is turned back on. For
the three zero-setting operations it isleft off. Also for the metal cutting operations, the tool
change command may include a move to a new xy location after the change is completed.
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V. AUTOMATIC NC-CODING

1. OVERVIEW

In the VWS2 system numerical control code (NC-code) is generated automatically by the
Data Execution Module. The code that is generated is executable by the GE2000 machine
tool controller that controls the Monarch VM C-75 Vertical Machining Center. Thiscodeis
not a standard language, but it is very similar to many other NC-code languages.

The description of NC-code given in section 2 of this chapter isintended to give the reader
an understanding of basic concepts and how they are applied in the VWS2 system. For
details of the exact meaning of the codes, refer to [MONA].

2. NC-CODE
2.1. Introduction

NC-code is a series of lines of alphanumeric characters. The lines are interpreted line-by-
line by the controller. On each line there are one or more entries separated by spaces. Each
entry isusually aletter followed by a number, possibly with a plus or minus sign in between.
In some cases (as on the second line in the example below), the number may be replaced by
an expression in parentheses. This expression will be evaluated at the appropriate time by
the controller, and the value will be a number.

The order of the entries on a line should be according to the following alphabetical
sequence: ngxyrzwfstdm. There may betwo "g" entries on aline and three "m"
entries, but there should not be more than one of any other type of entry.

The meanings of NC-codes used in the VWS2 system are givenin Table 6. Thetable covers
all NC-codes used except for the codes used on the first and last lines of a program, which
are unique. There are many other NC-codes available for use on the Monarch which are not
used in the VWS2 system.

The controller is smart enough to execute the codes on a single line in a sensible order,
which may be different from the order on the line. However, all of one line is executed
before the controller proceeds to the next line.

The controller keepstrack of the current position of thetip of the tool whichisin the spindle.

Thus, to control the tool, it is sufficient to tell the controller where to move the tip of the
tool next.
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Table 6. Numerical Control Codes

CODE WHAT IT MEANS WHERE USED
d Use the tool offset value of tool in the following slot. many functions
f Set the feed rate to the following value. many functions

g3

g53
056
g8l
082

g83
g84
g90

if

m3
mb5
mo6
m8
m9
m28
me67
m72
mo50

-

—N< XS0

Go to the line number indicated.

Run the following subroutine.

Ignore feed rate and move at traverse speed (fast).
Movein astraight line to the specified point.

Make a clockwise arc of less than a semicircle to the
point given by x and y, using the radius given by r.

If z-value is given, move linearly in z, making a helix.
Like g2, except counterclockwise.

Cancel the x and y zero settings.

Set x and y zero.

Traverse to r-plane, feed to z-value, retract.

Traverse to r-plane, feed to z-value, hesitate, retract.

Traverseto r-plane, peck feed to z-value, retract.

Run an air-pressure driven tapping cycle.

Interpret x, y, and z values as coordinates measured from
the current origin.

Check the truth of an expression. Do something if true
Start the spindle clockwise

Stop the spindle.

Retract the spindle.

Turn flood coolant on.

Turn flood coolant off.

Unknown - not documented.

Unknown - not documented

Lock the quill against motion in the z-direction.

Set the z-axis offset parameter.

Starts line number, has no effect except as goto label.
Denotes a parameter. Used in avariety of ways.

If used with g2 or g3, the following number is aradius.
Otherwise, following number is a z-value above part.
Set the spindle speed to the following number.

Change to the tool whose slot number follows.

The following number is aw-axis value.

The following number is an x-value.

The following number is ay-value.

The following number is a z-value.

What follows on thislineis only a comment.

depth_loop, version 2
3sat0's

many functions
many functions
many functions

many functions
many functions
change _tool, 3 set0's
center_drill_nc

cbore hole nc
csink_hole nc

hole nc

tap_hole nc

many functions

depth_loop, version 2
change _tool

close nc, 3set0's
many functions

many functions

many functions
2st0's

2st0's
pocket_chunk
close_nc, init_nc, set0z
print_nc_line
depth_loop, version 2
3set0's

many functions

many functions
change_tool
init_nc, close_nc
many functions
many functions
many functions
many functions
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2.2. An Example

To understand how NC-codeisinterpreted, it isuseful to look at an example. Here are seven
typical lines taken from a program written by the VWS2 system.

n0025 g90 g0 s3437 t2 d2 m3 m6

n0026 g56 g90 x(p66) y(p67)

n0027 m8

n0028 x+0.3816 y-0.26

n0029 g90 g0 z+0.1

n0030 g1 z+0.0 f5

n0031 g2 x+0.0473 y+0.2094 r+0.3538 z-0.0121

By referring to Table 6, we can interpret the seven lines of code as follows.

To begin with, the first entry on each line is simply aline number. The alphabetic part of
the line number is"n", and the numeric parts are in numerical order.

The entries on line n0025 mean:
090 = use absolute positioning with respect to the current origin
g0 = move at traverse rate when a move is indicated
s3437 = set the spindle speed to 3437 rpm
t2 = put the tool in changer slot 2 into the spindle
d2 = use the tool offset value stored for the tool in slot 2
m3 = start the spindle clockwise at the new spindle speed
m6 = retract the spindle

In executing this line, the controller retracts the spindle first, then stops it if it is turning
(even though there is no m5 command), findstool 2, putsit into the spindle, and restarts the
spindle at 3437 rpm. Notice that the g90 and g0 commands have no effect on this line.
These commands continue in effect until countermanded by some other g code and may have
an effect on following lines.

The entries on line n0026 mean:
056 = Set the x and y values of the origin at the values given on this line
(in absolute coordinates)
g90 = use absolute positioning with respect to the current origin
X(p66) = the x value is the value of parameter 66 (which must have been set earlier)
y(p67) = they value is the value of parameter 67 (which must have been set earlier)

The machine does not move when this line is executed, it just changes internal variables.

The entry on line n0027 means:
m8 = turn on flood coolant
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The entries on line n0028 mean:
x+0.3816 = move to where x equals 0.3816
y-0.26 = move to where y equals -0.26

The spindle moves in a straight line at traverse speed (as set on line n0025) to the point
whose x and y values are given on thisline. The x and y values are measured as coordinates
with respect to the new origin set on line n0026.

The entries on line n0029 mean:
090 = use absolute positioning with respect to the current origin
g0 = move at traverse rate
z+0.1 = move to where z equals 0.1

Neither the g90 nor the g0 isreally essential on thisline, since both are already in force, but
they do no harm, either. There are many instances in the VWS2 system of reiterating g
codes that are already in force. This programming practice is recommended in the
programming manual [MONA]. Codes other than g codes are not reiterated.

The entries on line nN0030 mean:
gl = movein astraight line at the current feed rate
z+0.0 = move to where z equals 0.0
f5 = set the feed rate to 5 inches per minute

The feed rate will be reset before the move starts.

The entries on line n0031 mean:
g2 = make a clockwise arc in the xy-plane
x+0.0473 = the arc should end where x equals 0.0473
y+0.2094 = the arc should end where y equals 0.2094
r+0.3538 = the radius of the arc should be 0.3538
z-0.0121 = at the same time, move the tool to where z equals -0.0121

The z moveislinear, so that the actual tool path is a portion of a helix. The feed rate which
was set on the preceding lineis still in effect, asisthe g90 command on the line before that.
Two clockwise arcs are possible. The one that is less than a semicircleis used. If the given
radius is too small, the controller will come to a halt and post an error message.
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2.3. First and Last Lines of a Program

The first line of an NC program always has the following format:
n0001 (ID,PROG,lok1nc,locking clevisfirst cut,1)

The term "lok1nc" on the above line is the program identifier, and may be replaced by any
other sequence of not more than six alphanumeric characters. Theterm "locking clevisfirst
cut" on the above lineisabrief description of the program and may be replaced by any other
sequence of not more than 30 alphanumeric characters and spaces. No other spaces are
allowed within the parentheses.

The last line always has the format:
n0160 (END,PROG)
where "0160" may be replaced by any other four digits.
3. GENERAL APPROACH TO CODE-WRITING
3.1. Introduction

Asnoted earlier, if the NC-code writing option of the Data Execution module is on, a block
of code is written for each step in the enhanced process plan. Since there are twenty-one
different work elementsin the VWS2 system, and two of them (face_mill and fly_cut) share
an NC-coding function, there are twenty coding functions which may be called. Five of
these (init_nc, close_nc, and the three zero-setting functions) do not write code for cutting
metal; the other 15 do.

The 15 coders for metal cutting always check first if atool change is required, and make a
change if needed. In order to do this, the module keeps track at all times of which tool isin
the spindle. The module also keeps track of the current spindle speed, and changes it only
when necessary. Earlier versions of the system kept track of other items, as well, but the
benefit of keeping track (in shorter code and reduced machining time) was slight and not
worth the cost of complicating the NC-coding system.

At the end of a cut, the tool is always left down in the material, and it is left to the next
operation to withdraw the tool.

The NC-code is written as pseudocode by the system and stored in reverse order from the
way it will ultimately appear in the file. At the end of the module’s operation, the
pseudocode is printed out as real NC-code. Also at the end of the modul€e’ s operation, if the
drawing option ison, acopy of the pseudocode (in the correct order) is given to the graphics
system in case the user wants to see the tool path. If the module aborts during operation, as
it may if some feature or operation fails verification, the pseudocode is scrapped, and
nothing is printed out.
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3.2. Pseudocode and Print Routine

The use of pseudocode was adopted principally to simplify the job of writing NC-coding
functions, but it has proved to have several other advantages. The biggest side advantage is
that pseudocode is easily used by the drawing system to draw tool paths. Thisis becauseits
format is native to LISP and because conceptually separate items (such as the name of a
coordinate and its value) are still separate. Drawing from real code would require that a
parsing routine be written to separate groups of charactersinto conceptually distinct bunches.

An earlier version of the system wrote NC-code line-by-line to afile, opening and closing a
port repeatedly. The system could not handle the frequent opening and closing of the port
correctly, and was dropping lines of code. The use of pseudocode cleared the problem up
since the port is opened only once and closed once.

Pseudocode is stored in the LI1SP environment as a list of sublists. Each sublist represents
one line of code. The pseudocode differs from the final code in the following respects (in
addition to the obvious difference of the pseudocode being in the environment only and the
real code being in afile only).

A. In pseudocode floating point numbers are kept with all the significant figures
LISP provides (17 or so). Inreal code, floating point numbers are rounded off to
4 decimal places, and terminal zeros are suppressed in the second through fourth
places.

B. In pseudocode some numbers may be either fixed or floating point and may or
may not have a sign; namely numbers that represent values of r, X, y, or z. Such
numbers are converted to floating point numbers by the print routine and are
always printed with a sign.

C. In pseudocode there are no line numbers; they are not needed since lists are
inherently ordered. Line numbers appear in the real code. The numbers are
generated by the print routine, which uses a counter to keep track. The absence
of line numbersin pseudocode is a big help when copies of several lines are to be
made, as when repeating code at several different depths.

D. Pseudocode may contain strings. Real code contains no strings. Strings may be
used to hold bits of code that will be welded together by the print routine.

E. The print routine automatically deletes spaces following some characters in the
pseudocode, unless instructed otherwise.

F. Pseudocode may contain three terms which are not printed, but are interpreted
specially by the print routine. These are:

Term Inter pretation

nil Do not print anything. Using nil simplifies the writing of NC-coding functions.
sign Print the sign of the following number.

no_space Do not put any space between the previous and following items.
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The pseudocode that results in the seven lines of code given in the example of section 2.2. is
asfollows:

(g2 x 0.04729792843330796 y 0.2093696684367282 r 0.35375 z -0.0121017118049899)
(g1z0f5)

(g909g0z0.1)

(x 0.3816198612624016 y -0.26)

(m8)

(956 990 "x(p66)" "y(p67)")

(990 g0s3437t2d2m3 m6)

An example of line made up in bitsis the following:

("p66=(p97" sign 0.0 no_space")" "p67=(p98" sign 0.0 no_space")")
If this happens to be line 18, it prints out as follows:

n0018 p66=(p97+0.0) p67=(p98+0.0)

3.3. Comments

Whenever atool change occurs, acomment lineis put into the NC-code, describing the new
tool. Most of the 15 metal cutters insert a comment describing the operation or the feature
being machined. The comment may appear on a separate line, or at the end of an effective
line. Comments are denoted by an exclamation mark (!), and anything following the mark on

aline of codeisinterpreted as a comment, no matter how it would ordinarily be interpreted.

3.4. Machine Capabilities

3.4.1. Introduction

The NC-codes selected to be used in the VWS2 system were generally ones which stand for
capabilities which are common to most numerically controlled milling machines. Thiswas
done so that the system could be adapted easily to other machines. The system has been
adapted for a different milling machine at the University of Maryland, and parts have been
cut using NC-code written by the adapted system.

By not using any of the zero-setting routines, and using version 1 of the depth_loop
function, only the common capabilities listed in the next subsection are needed, except that
init_nc, close_nc, and change_tool all would have to be rewritten for a milling machine
which does not have parameter capability, since those three functions use parameters.
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3.4.2. Common Capabilities

The following capabilities used in the VWS2 system we believe to be common to most
numerically controlled machine tools. They are given herein the order they appear in Table 6.
use a tool offset value

set feed rate

move at traverse speed

mill in a straight line in three dimensions

make a circular arc in two dimensions or a helical arc in three

run canned cycles like those represented by g81, g82, g83, and g84.

interpret X, y, and z values as coordinates

(the alternative isto interpret x, y, and z values as distances from the current location).
8. start and stop the spindle

9. retract the spindle

10. turn coolant on and off

11. lock the quill

12. use NC-code with line numbersin it

13. set spindle speed

14. use radii in making arcs and traverse to a given z in canned cycles

15. change atool

16. move the w-axis

17. use NC-code with commentsiin it

Nog,rwdNE

Theair pressure driven tapping cycle used to implement the g84 code on the Monarch VM C-
75 is not acommon capability, but a canned tapping cycle of some sort iscommon and could
be substituted.

3.4.3. Less Common Capabilities

The least common capability of a milling machine used in the VWS2 system is the
Monarch’'s probing capability. This capability is employed in the three zero-setting
operations. Probing is used in the system principally so that we can deal with slight
variations in the location of parts which have been loaded automatically by arobot into the
vise. The g53, g56, m27, m28, and m950 codes and subroutine calls are used only in
connection with zero-setting.

A second less common capability is the use of parameters and the evaluation of expressions
including parameters. Parameters are used in the three zero-setting operations, init_nc,
close_nc, change_tool, and the second version of depth_loop.

The last two uncommon capabilities are used only in the second version of depth_loop,
namely jumping to some other line of code than the next one (a"goto" statement) and using
the conditional "if" to trigger the jump. The depth_loop function writes all the NC-code
needed to repeat a series of lines of code at increasing depths. The first version of
depth_loop prints new lines at each new depth. The second version reuses the lines by using
a parameter to represent depth, using "if" and "goto" to loop back as many times as
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necessary, and increasing the value of the depth parameter on each loop. The use of the
second version of depth_loop may save several hundred lines in a 1000 line program,
depending upon the nature of the cuts, of course.

4. SIMPLE ALGORITHMS

4.1. Drilling

The drill islocated over the center of the hole, brought down quickly to 0.1 inch above the
material, and fed vertically downwards to make the hole. During feeding thedrill isretracted
for a moment and then fed back into the hole each time it goes another pass depth deeper.
Thisis called pecking. Once in the right xy location, the entire algorithm is carried out by
a g83 canned cycle on one line of NC-code.

4.2. Tapping

The tap is located over the center of the hole, brought down quickly to 0.1 inch above the
material, and pushed vertically downwards by air pressure. The tap screws itself into the
material to the given depth. The spindle reverses and unscrews the tap from the hole. Once
in the right xy location, the entire algorithm is carried out by a g84 canned cycle on one line
of NC-code.

4.3. Countersinking

The countersink is located over the center of the hole, brought down quickly to 0.1 inch
above the material, and fed vertically downwards to the necessary depth. At the final depth
the tool hesitates (dwells) for half a second to make a clean cut, and then it is withdrawn.
Once in the right xy location, the entire algorithm is carried out by a g82 canned cycle on
one line of NC-code.

4.4. Milling a Straight_Groove

A straight groove is milled by ramping the tool back and forth into the material. On each
ramp the tool is angled downwards at the minimum of:
A. the maximum ramping angle,
B. an angle that will make the vertical depth of the cut at the far end of the groove be
one pass_depth,
C. an angle that will reach the bottom of the groove at the far end.
After the last ramp is done, the tool is returned to the starting point at constant depth
to complete the work.

If the length of the tool path for a straight_groove is less than 0.1 inches, then the groove
is too short to ramp. In this case, an error message is issued, and the groove is milled by
plunging at alow feed rate into the material at one end of the groove and milling to the other
end. The experienced user, having been notified, can then decide whether or not it is safe to
use this code.
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4.5. Milling a Groove

The set of corners for the groove is converted into a set of contour corners, and the contour
groove milling algorithm is used.

4.6. Chamfering

A chamfer tool is moved on a path that is a rectangle with (possibly) rounded corners.
Recall that a chamfering operation breaks an edge where a vertical wall meets a horizontal
surface of the part. The tool meets the vertical wall at exactly half a tool radius from the
axis of the tool and cuts with only the upper half of the tool.

4.7. Center Drilling

A center drill is brought to the correct xy location, brought down quickly to 0.1 inch above
the material, and fed vertically downwards to the necessary depth. Once in the right xy
location, the entire algorithm is carried out by a g81 canned cycle on one line of NC-code.

4.8. Counterboring

The counterboring algorithm is identical to the countersinking algorithm, except that the
dwell time is the amount of time it takes for the spindle to make two full turns, or a quarter
of a second, whichever is greater.

5. NON-TRIVIAL BUT EASY ALGORITHMS

5.1. Face Milling

The face milling algorithm mills away a rectangular area of the top of the part to a fixed
depth. Normally the rectangle includes the whole top surface of the part, but this is not
required.

If the rectangle islonger in the x-direction than the y-direction, the face mill is fed back and
forth across the part parallel to the x-axis, removing a strip of material one stepover wide
on each horizontal move. After each move parallel to the x-axis, the tool is rapidly moved
one stepover in the y-direction while it is outside the rectangle. The last move parallel to
the x-axis is adjusted so that the face mill extends beyond the rectangle by 0.1 inch in the
positive y-direction (less if the last strip is nearly as wide as the tool).

If the total depth to be milled is greater than the pass depth, the same moves are repeated
until the final depth is reached.

If the rectangle is longer in the y-direction than the x-direction, the back and forth motion
is parallel to the y-axis and the stepover is made in the x-direction.

The back and forth motion results in an alternation between conventional cutting and climb
cutting. This has not proved to be a problem.
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5.2. Fly Cutting
The fly cutting algorithm is identical to the face milling algorithm. In fact, the same NC-
coding function is used for both. Of course speeds, feed rates, pass depths, and stepovers
are different for the two operations, but these are arguments to the NC-coding function.

6. SOPHISTICATED ALGORITHMS

6.1. Pocket Milling

6.1.1. Introduction

The normal pocket algorithm is non-trivial but easy. However, the overall algorithm is
complicated by the variety of situationsit is designed to handle. The complicating factors
are: very small pockets, small pockets, and making the initial slot. Figure 6 shows the top
view of the cutter path for the normal situation and the three complications in milling a
pocket.

6.1.2. Normal Pocket Algorithm

Asshown in Figure 6(A), the normal situation isthat aslot is milled across the center of the
pocket to full depth. Then several passes are made at successively increasing depths to mill
away the bulk of the material inside the pocket to within 0.01 inch of the final sides of the
pocket. Finally, afinish pass around the perimeter of the pocket is done at the full depth to
even up the sides of the pocket.

The bulk removal passes are identical except for the depth of the cut. On each pass the tool
is inserted in the initial slot, moved downwards and to the right to start the cut, and then
passed around the expanding periphery of uncut material in a clockwise direction, moving
downwards and to the right again after each full circuit. On the first few circuits, the tool
path is rectangular, but as milling proceeds, the corners of the rectangle are rounded
concentrically with the corners of the pocket.

6.1.3. Very Small Pockets

A very small pocket is one whose length and width are both less than 0.02 inch greater than
the diameter of the end mill being used to make the pocket. A very small pocket is made by
plunging the end mill straight into the material to full depth, and then making a finish cut
(unless the tool is the same size as the pocket, in which case no finish cut is needed). This
is shown in Figure 6(B). Because plunge cutting may be unsafe, a message is sent to the
user if aplunge cut isto be made.
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6.1.4. Small Pockets

If both the length and the width of the pocket are smaller than 1.5 times the tool diameter
plus 0.02 inch, so that there is not enough room to mill aslot, but the pocket is not very small
(as defined above), bulk material removal is accomplished by generating a set of contour
corners, and a contour grooveismilled 0.01 inch (or less, if the pocket isvery narrow) inside
infinal walls. Then afinish passismade. Thisisshown in Figure 6(C). Because the pocket
is small, making a contour groove will not leave an island inside the pocket.

6.1.5. Making the Initial Slot

In the normal situation, the length of theinitial slot is the difference between the length and
width of the pocket. If the pocket islonger in the x-direction, the slot is horizontal. If itis
longer in the y-direction, the slot is vertical. If the normal size slot is long enough (more
than one tool radius long), it is made by ramping down into it.

If the pocket is square, or close to it, the normal slot length will be too small for ramping.

In this case, as shown in Figure 6(D), the ends of the slot are extended to near the walls of the
pocket to allow room for ramping. Thiswill provide asuitable line unless the pocket is small.
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Figure 6. Pocket Cutting Tool Paths
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In thisfigure tool paths are shown for the four variations of the pocket making algorithm.
Heavy outlines show the pockets. Light lines show the tool paths.

The distance between the outermost pair of tool path lines, 0.01, is exaggerated in each case.
(A) the normal situation. First aslot is made, then material removed, then a finish cut made.
(B) avery small pocket. First aholeis plunge cut, then afinish cut made.

(C) asmall pocket. First acontour groove is made and then afinish cut made.

(D) length and width are amost equal. The initial slot goes across the pocket, rest islike A.
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6.2. Text Milling

Text milling is accomplished by milling each character separately. The first character is
milled at the starting location of the text. The routine which generates NC-code for one
character also returns the x-value of the location where the next character should start.

The VWS2 methods for dealing with text are described in detail in sections 2.15.7 and 2.16
of chapter Il of the design protocol paper [K& J2].

Each character in each font has a template for making the character stored in the fonts
database. The template for making a character consists of two lists: nc_points and nc_path.
In the plain font the letter R, for example, has the nc_points and nc_path shown in Figure 7.

Each entry on the nc_points list (except the last one) is a pair of numbers which represent
the x and y coordinates of a point on the character. These coordinates are scaled according
to the height of the text and are translated to the proper xy-location.

The last entry on the nc_points list is the point to go to when the character is finished. The
x-value of the last point is always larger than the x-value of the lower right-hand corner of
an imaginary parallelogram that just fits around the character by an amount which is the
spacing for the particular font. The y-value of the last entry is always zero.

Each entry on the nc_path is a pair in which the first item represents a type of path to mill
to the next point, and the second item tells which point on the nc_pointslist isthe next point.

The letter codes found on the nc_path list mean the following:
s = straight line
w = clockwise arc
ccw = counterclockwise arc
j =jump without milling

The use of nc_points and nc_path to mill the letter R is explained in Figure 7.
If text is deep, it will be cut in several passes.

Theinitial entry of the tool into atext character is by plunge cutting. While thisis not ideal,
since text is almost always quite shallow, entry by plunge cutting is almost always safe.

For most fonts, the radius used for making arcs is of such a size that arcs and straight lines
join together smoothly. However, one of the options of the font maker isto flatten out arcs
by making the radius larger. The "angular" font uses this option. No change in any other
part of the system is required.
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Figure 7. Text Tool Path

(0.5 1.0)

(0.0 1.0)

(0.667 0.833)
(0.25 0.5)

(0.667 0.667)

(0.0 0.5)
(0.5 0.5)

(0.0 0.0) (0.667 0.0)

Thisfigure shows the tool path for milling the letter R in plain font. The outline of the R is shown
with aheavy black line. Thetool path is shown with a heavy grey line.

Two sets of data are needed. Nc_pointsisalist of pairs of numbers representing coordinates:
((00)(00.5) (01) (0.51) (0.667 0.833) (0.667 0.667) (0.5 0.5) (0.25 0.5) (0.667 0) (1 0))

Nc_pathisalist of pairs. Thefirst element of each pair is aletter code, and the second element is
an integer standing for an element of the nc_points:
((s3) (s4) (W5) (s6) (W7)(s2)(8) (s9)).

The machining of a character always starts at the first point on the nc_points list. Thus, milling
begins by moving to (0 0) and inserting the tool. Then the nc_path isfollowed in order:
(s3) = mill straight to point 3 at (0 1).
(s4) = mill straight to point 4 at (0.5 1).
(w 5) =mill inaclockwise arc to point 5 at (0.667 0.833).
(s 6) = mill straight to point 6 at (0.667 0.667).
(w 7) =mill inaclockwise arc to point 7 at (0.5 0.5).
(s2) = mill straight to point 2 at (0 0.5).
(j 8) = pull the tool up, jJump to point 8 at (0.25 0.5), and reinsert the tool.
(s9) = mill straight to point 9 at (0.667 0).
Thelast point on the nc_pointslist, (1 0), shows where the next character should start.

For NC-coding, the nc_pointslist is scaled and translated appropriately before being used.
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6.3. Milling a Contour Groove

A contour groove is specified by a set of corners. The notion of a set of contour corners (a
contour outline) is discussed in detail in the design protocol paper [K&J2], Chapter II,
section 2.15.8. Included in the description of each corner are its starting and ending points,
the radius of the arc, and the angle it subtends. If the first corner has a nil radius, then the
groove is open. If theradius for the first corner has a value, then the groove is closed, and
can be milled by ramping downward in circuits around the groove. If the groove is open,
then the groove must be milled back and forth between the ends.

A separate routine is used for each type of contour groove. For a closed groove, the ramp
angle is set according to the type of material (5 degrees for steel and monel, 15 degrees for
aluminum and brass). The tool, which is an end mill for aflat-bottomed groove and a ball-
nosed-end-mill for a round-bottomed groove, is ramped into the material at the ramp angle
along the contour outline until (i) one pass depth is reached, or (ii) the bottom of the cut is
reached, or (iii) a complete circuit around the outline is made. In case (i), the tool path is
levelled off for therest of the circuit. In case (ii), the pathislevelled and one more complete
circuit is made to the place where levelling started.

For an open groove, the method is slightly different. The ramping depth is found as the
depth, the pass_depth, or the length of the groove times the tangent of the maximum ramping
angle, whichever is smallest. The change in depth for each segment is then the fraction of
the groove length covered by the segment times the ramping depth. This is repeated, with
NC code written for each segment, until the end of the groove isreached. The grooveisthen
milled in the reverse direction at a constant depth. This process is repeated as many times
as necessary to reach the proper depth.

6.4. Milling a Contour Pocket

The algorithm for milling a contour pocket is shown in Figure 8. The algorithm is described
on the figure, as well. The initial cut is made by the routine described in section 6.3 for
ramping into closed contour grooves. The final cut is made by a simpler routine which
inserts the tool to full depth first and then follows the contour.

A second version of this algorithm, written earlier, replaces the middle portion of the
algorithm (bulk material removal) with a zigzag pattern. This second algorithm is more
difficult. It was discarded because it alternates between conventional cutting on the zig and
climb cutting on the zag. Using the algorithm would have required that a much smaller
stepover be used for steel to avoid chatter during climb cutting. Thiswould have lengthened
machining time considerably.

6.5. Milling a Side Contour

The algorithm for milling a side contour is shown in Figure 9. The algorithm is described
on the figure, as well. As with a contour pocket, the initial cut is made by the routine
described in section 6.3 for ramping into closed contour grooves, and the final cut is made
by the simpler routine.
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Figure 8. Contour Pocket Tool Path

Thistool path drawing, which is a bit image taken from the screen, shows the tool path used to
cut aparticular contour pocket. The heavy line marksthe outline of the contour pocket. A light
solid line is drawn when the tool is cutting. A light dotted line is drawn when the tool isin the
air above the part.

The cut starts at the top of the picture. The inner contour path is followed first. It is made by
ramping the tool down into the part to full depth while following the path.

The horizontal cuts are made next to remove the material on theinside of the contour. Each cut
spansthe inner contour and is made from right to left so that conventional milling isdone. The
order in which the cuts are made is from top to bottom. After each cut the tool is withdrawn,
moved to the beginning of the next cut and inserted rapidly. Note that there are no horizontal
cutsin the neck of the figure. Thisis because cuts whose length isless than atool radius have
been suppressed; the material they would cut has already been removed.

If the pocket is deep, the entire pattern of horizontal cutsis repeated several times at increasing
depths to reach the final depth.

The last step isto make afinish pass at full depth around the outer contour outline.
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Figure 9. Side Contour Tool Path

Thistool path drawing, which is a bit image taken from the screen, shows the tool path used to
cut a particular side contour. The rectangle is the part, and the heavy line marks the outline of
the side contour. A light solid line isis drawn when the tool is cutting. A light dotted lineis
drawn when the tool isin the air above the part.

The cut starts at the | eft of the picture, slightly below thetop. The outer contour path isfollowed
first. 1tismade by ramping the tool down into the part to full depth while following the contour
path.

The horizontal cuts are made next to remove the material outside the outer contour. Each cut is
made from right to left so that conventional milling is done. The order in which the cuts are
made is from top to bottom. After each cut the tool is withdrawn, moved to the beginning of
the next cut, and inserted rapidly. At the right, the tool is inserted outside the part by a tool
radius plus 0.1 inch. At the left the tool is withdrawn just at the edge of the part. Cuts whose
length inside the material is less than a tool radius have been suppressed; the materia they
would cut has already been removed. If the side contour is deep, the entire pattern of horizontal
cutsis repeated several times at increasing depths to reach the final depth.

The last step isto make afinish pass at full depth around the inner contour outline.




VI. DATA EXECUTION MODULE SOFTWARE -

1. INTRODUCTION

The software for the Data Execution module is all written in Franz Lisp, asis nearly all the
rest of the VWS2 software. It is compilable, but is normally run interpreted rather than
compiled since changes have been frequent, and, if bugs appear they are much easier to find
and eliminate in uncompiled code.

In addition to the authors, portions of the code were written by three others. Mr. W.
Timothy Strayer, a summer worker at NBS, had a hand in many earlier versions of the NC-
coding functions. Mr. Alton Quist, a research associate from General Dynamics who
worked at NBS for ayear ending in June 1985 wrote most of the original version of the NC-
coding system, although only a few lines of it remain. Dr. Edward Magrab, formerly an
NBS employee, provided Monarch language versions of the three top-level zero-finding
functions. He also wrote the three Monarch language zero-finding subroutines which are
called by the top-level functions.

2. LISP FUNCTIONS

When it isrun with all options off and the input process plan has already been enhanced, the
Data Execution module uses eight core functions plus a few miscellaneous and property list
manipulation functions (in addition to the functions provided by Franz LISP). When it is
run with all options on and the input process plan is not enhanced, the module uses 19 core
functions, 57 NC-coding functions, quite a few miscellaneous and property list
manipulation functions and several hundred graphics, verification, and geometry functions.
The core functions and the NC-coders are listed in Table 7. Half the core functions are in
the exec2 directory and half in the proc2 directory. All of the NC-coders are in the exec2
directory. There are no functions in the exec2 directory which are not listed in Table 7.

Functions not listed in Table 7 are discussed in other papers written for AMRF
documentation.

The function at the top of the hierarchy is "execute plan". The real workhorse, though, is
"execute _step”, which makes data-driven function calls to over 50 of the top level
verification, drawing, and NC-coding functions. The operation of these two functions is
described earlier in this paper.
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Table 7. Data Execution LISP Functions

CORE FUNCTIONS - EXEC2

add feature
enhancel plan
enhance_tool_parms
exec_header
execute plan
execute_step
init_exec_plan
init_workpiece
precify

CORE FUNCTIONS - PROC2

add extra items
cull_steps
delete_step
enhance_step
insert_face mill
insert_step
order_ops
pass_depth
print_plan
pull_tool req

TOP LEVEL NC-CODERS - EXEC2

cbore hole nc
center_drill_nc
chamfer_in_nc
chamfer_out_nc
close nc

contour_groove_nc
contour_pocket nc

csink_hole nc
face_ mill_nc
groove _nc

hole nc

init_nc

pocket_nc
setO_center_nc
setO_corner_nc
set0 z nc
side_contour_nc
straight_groove nc
tap_hole nc
text_nc

NC-CODING SUBORDINATES - EXEC2

arc_length
cg_chunk
cg_go_backwards
cg_ramp
change_tool
compute r_plane
cp_chunk
cp_cull
cp_first_pt
cp_int_gen
cp_int_order
cp_length

cp_next_init
cp_next_pt
cp_pick _angle
cp_ramp
cp_traverse
cs_chunk

cs _cull

Cs traverse
depth_loopl
depth_loop2
feed rate
gets_and_puts
groove_chunk

letter_chunk
mill_letter
nc_hunk
nc_line
pocket_chunk
print_nc file
print_nc_line
radial_stepover
rev_path_edoc
spindle_speed

straight_groove_chunk

sub_face mill
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